1tChoices: An Object-Oriented Multimedia Operating System

Roy H. Campbell

See-Mong Tan

Department of Computer Science
University of Illinois at Urbana-Champaign
Digital Computer Laboratory
1304 W. Springfield
Urbana, IL 61801

{roy,stan} @cs.uiuc.edu

Abstract

This paper describes the design of the uChoices o0b-
ject-oriented multimedia operating system. pChoices
provides an architecture for interconnecting different
0S5 subsystems, with these subsystems realized as sep-
arate modules. The modules will be implemented as
independent object-oriented frameworks. Frameworks
interact through exported abstract interfaces. The sub-
classing of components within frameworks enables ap-
plication and media-specific customization. pChoices
also provides a unified scheme for memory handling
and passing across, as well as between, all OS sub-
systems. This allows buffer transfers and manipu-
lation within and between operating system modules
without copying, while allowing subsystems to special-
1ze their views of memory buffers for efficient han-
dling of problem-specific behavior. Interpreted agents
may be embedded in the kernel that can control sys-
tem level processing of multimedia streams without in-
terference, eliminating excessive system call overhead.
Operating system support for authentication, encryp-
tion, and delegation is transparently provided via an
extensible framework that customizes interfaces to op-
erating system resources. A new networking subsys-
tem based on an Asynchronous Transfer Mode network
environment will allow Quality of Service guarantees
within the network protocol stack. These features are
combined in puChoices to give an environment that will
support high bandwidth multimedia streams.

1 Introduction

1 Choices is an object-oriented operating system
geared toward supporting high bandwidth multime-
dia streams. The operating system is targeted toward
uniprocessor as well as small to medium scale mul-
tiprocessor (2 to 32 processor) machines. pChoices
draws many of its design ideas from lessons learned in
our work on the original Choices[5, 4] operating sys-
tem, while incorporating several new innovative ideas.
This paper presents our design of uChoices.

A multimedia capable operating system must sup-
port a wide range of traffic types. Video and au-
dio data streams are likely to be pervasive in the
network and compute fabric of the future. We de-
signed pChoices to support ubiquitous video and au-

dio streams. Previous work on multimedia support
in operating systems[27, 3, 14, 17] have concentrated
primarily on scheduling algorithms for continuous me-
dia. Our work will complement the existing corpus
by providing frameworks for organizing the various
mechanisms and optimizations. In addition, we ex-
amine how the architecture of the operating system
can be tuned to support high bandwidth multimedia
(especially video) streams. Supporting one multime-
dia stream is not difficult, the hard part is scaling the
operating system to support and orchestrate many dif-
ferent streams at once. In order to increase scalability,
we take efforts to reduce second order effects such as
those due to extraneous memory copy operations.

A multimedia operating system must handle a va-
riety of continuous and variable bit rate streams of
data, each with different Quality of Service require-
ments. It is unlikely that a single mechanism or pol-
icy for handling every variation in class of traffic type
can be built into the operating system, so we have
purposely designed the system such that components
and frameworks may be extended and specialized to
accommodate problem-specific behavior. In previous
work, we showed that application-specific customiz-
ability can significantly improve the performance of
regular scientific applications[19]. We extend our work
to traffic-specific and media-specific customization.

Continuous data streams have a strong impact on
memory resource management. Disk blocks or net-
work packets containing multimedia data streams flow
through operating system modules, for example, a
video server may repeatedly read a disk block contain-
ing a video frame and send it out over the network,
while a video client may read video disk blocks and
send it to the display subsystem. pChoices is designed
to provide low latency data paths between all OS mod-
ules by unifying memory buffer handling across the
entire operating system, thus eliminating the common
penalty incurred with copying due to changing mem-
ory buffer abstractions.

2 Modules and Frameworks

1 Choices’s design is based on a framework for inter-
connecting different OS subsystems, with these sub-
systems realized as separate modules. Modules will

be implemented as independent object-oriented frame-
works that interact through well defined interfaces.
Within a framework, the subclassing of components
will allow us to customize its various parts to sup-
port both application and media-specific specializa-
tion. pChoices may be viewed as a framework for em-
bedding the sub-frameworks for each OS subsystem.

Our previous work on Choices has shown that it is
feasible to build an operating system through object-
oriented techniques of encapsulating all system re-
sources as objects. Abstract classes are used to cap-
ture the properties of system resources, while sub-
classes implement the actual details for particular ma-
chines or processors. This achieves portability across
different platforms. A collection of abstract classes
may cooperate to form a framework for a particular
OS subsystem[6].

We envision pChoices to have independent sub-
frameworks for each OS subsystem. That is, each OS
subsystem is a module realized as a set of abstract
classes. Sound software engineering principles may be
used to decompose the operating system into inter-
acting modules. Modules may interact only through
well-defined interfaces. While code reuse through in-
heritance is encouraged internally within a module, we
do not allow inheritance across sub-frameworks. This
design effectively decouples each module from imple-
mentation details specific to other modules. We con-
sider inheritance across module boundaries ill-advised,
leading to complicated dependencies and interrelation-
ships between classes in different modules.

3 Customization for Multimedia

Streams

Replacing traditional operating system communi-
cation and scheduling mechanisms with customized
implementations can improve the performance of ap-
plications [18]. We used object-oriented frameworks
to organize the large range of optimizations possible
in the Choices operating system.

Multimedia data streams have a wide range of char-
acteristics — high bandwidth constant and variable
bit rate video, low bandwidth audio or compact disc
quality audio. Different traffic types require special-
ized operating system support in order to maintain
quality of service guarantees[17]. For example, dif-
ferent scheduling disciplines and resource allocation
strategies are required for different traffic classes.

We extend our previous ideas on application-
specific customization through the use of object-
oriented frameworks. Components in the framework
may be subclassed in pChoices to customize behav-
ior for different classes of multimedia data streams.
For example, different subclasses of the system sched-
ulers and resource allocators may be implemented to
support isochronous constant bit rate, variable bit
rate and available bit rate data. Buffer handling for
the networking subsystem may be specialized toward
large numbers of small cells for Asynchronous Transfer
Mode (ATM) connections, or small numbers of large
messages in the case of IP over an Ethernet.

4 Agents

Operating system design has moved from mono-
lithic, single kernels such as Unix[24] where all OS
services are implemented in the kernel, to micro-kernel
designs such as Mach[23], where the majority of OS
services are user-space applications. The communi-
cation overhead incurred when invoking server op-
erations in micro-kernel designs is often significantly
high[21]. For performance reasons, newer kernels allow
the migration of some services back into the kernel,
alleviating the need for multiple cross domain inter-
process communication calls. What services exist in
the kernel and what are outside it is a configuration
decision (eg. Spring[15]). With newer RISC machine
architectures built around deep instruction pipelines,
a user trap into the kernel to access operating sys-
tem services is becoming more and more expensive to
service.

In designing the Jetstream[10] LAN, Edwards et al.
amortize system call overhead over several operations
by batching operations into a script. Recent systems
such as SPIN[2] allow user applications to insert prop-
erly verified application code sequences into the ker-
nel to customize the operating system for application-
specific operating system services. Qur approach is
to embed interpreted agents into the kernel. These
agents can be checked for security purposes in the
same way SPIN verifies its application code sequences.
Agents may be built to aggregate kernel calls for appli-
cation programs that frequently call the system. For
example, the Unix “Is” or “find” commands spend
most of their time accessing the file system. Agents
may be used to remove control traffic between the
user and kernel. Trusted agents may be used to pro-
vide kernel level processing of multimedia streams be-
tween different transport, storage, and display devices.
For example, it is usually unnecessary to pass a video
frame coming over the network to application space
before displaying it. Instead, the agent may control
system processing of video frames arriving from net-
work subsystem to display subsystem without inter-
ference or crossing protection domains.

We envision agents to be implemented in a simple,
flexible scripting language similar to Tcl[22]. We are
experimenting with different ways for efficient execu-
tion of interpreted agent scripts.

5 Unified Buffer Management

1 Choices is composed of independent modules in-
teracting through well specified module interfaces.
While the passing of integer and pointer arguments
between modules may be accomplished with call-by-
value, the passing of memory buffers is more prob-
lematic. Ideally, memory buffers should not be copied
when passed as arguments between different OS sub-
systems, or to user applications. The memory copy-
ing overhead on networking paths from user to net-
working device and vice versa is well known to im-
pact negatively on network throughput and latency[7].
However, different modules of traditional operating
systems often have different abstractions for memory
buffers. For example, the disk subsystem may operate
on buffers of disk blocks, while the networking sub-

system may operate on network messages or packets.
Passing a memory buffer from the disk to the network
subsystem (for example, when a video server deliv-
ers a video frame stored on disk over the network)
necessitates a copy from a disk block buffer to a net-
work packet buffer as the cost of changing buffer ab-
stractions. Memory buffer copying increases the CPU-
memory bus utilization. It may become a severe bot-
tleneck for a system intended to handle continuous
streams of multimedia data. This is an unnecessary
penalty that can be eliminated if all subsystems use
a single, unified scheme for handling memory buffers.
Memory buffers may then be passed from one module
to another without copying.

The design of pChoices includes a scheme for mem-
ory buffer manipulation and passing across and within
all OS subsystems. Our idea unifies memory use across
the entire operating system by reifying memory buffers
(regions of memory). Memory buffers are represented
as MemoryObjects, which may be thought of as gen-
eralizations of Unix mbufs[l]. Thus a physical page
frame may be represented as a MemoryObject. Ei-
ther swapping the page to disk or sending it out over
the network requires no copying or format conversions
since the virtual memory, disk and network subsys-
tems all operate on the same abstraction.

While MemoryObjects may serve as the common
currency for memory buffers within the operating sys-
tem, it is doubtful that a single abstraction will suffice
to support the requirements of every subsystem. Thus
we allow different views to be taken of the same under-
lying MemoryObject. MemoryObjectViews aggregate
MemoryObjects and impose a subclass specific struc-
ture on the MemoryObjects. Subsystems may special-
ize their views of memory buffers for efficient handling
of problem-specific behavior. For example, the net-
working subsystem would have a MemoryQObjectView
subclass allowing efficient addition of network headers
and trailers. The MemoryObjectView class must sup-
port the BECOMES relation, to allow one view to be-
come another on transfer from one module to another.
All representations of a MemoryQObject will allow it-
eration from one memory buffer region to the next,
thus conversion from one view to another is straight-
forward. This concept may also be supported through
a meta-object protocol. We are currently considering
the merits of each approach.

This idea negates the penalty imposed by chang-
ing memory buffer abstractions across modules within
the operating system. It is possible for particular
subclasses of MemoryObject to allow the fast cross-
domain page remapping strategy used in Fbufs[9].
Memory buffer allocation needs to be aligned within
a protection domain, otherwise page remapping may
cause fragments of a memory buffer for another do-
main be mapped into the virtual memory space of
another domain. Qur unified scheme can provide a
low latency path for passing memory buffers between
operating system modules, as well as user space appli-
cations.

6 Security and Authentication

1 Choices will provide a secure environment through

the use of authentication, encryption, and delegation.
The access control model of security [20] extended
with compound principals[12] will be used throughout
the system. As with other subsystems of pChoices, se-
curity is implemented through a customizable frame-
work [26], which provides for authentication and en-
cryption without requiring restructuring of applica-
tions. Implementation of the security framework of
1 Choices will take advantage of the MemoryObject
class, using subclassed MemoryObject Views to provide
encryption, authentication, and any other security fea-
tures necessary to the user.

We are also investigating methods of increasing per-
formance of security operations to allow greater inte-
gration and use with multimedia data. The use of
delegation and authentication methods allow trading
of current CPU time for future performance improve-
ment of secure sessions, such as found in [13].

7 Network Subsystem

The networking subsystem forms an integral part
of a multimedia operating system. However, tradi-
tional networking subsystems are strongly IP-centric.
The data structures and scheduling policies within tra-
ditional OS kernels are tuned toward supporting IP.
Message subsystems are optimized for small numbers
of large messages, not large numbers of small cells, as
is the case for ATM networks. All data streams are
also equivalent — there is no comparable concept of
“bandwidth allocation.” With desktop workstations
in the near future likely to be small to medium scale
multiprocessors, the networking subsystem must be
designed to take advantage of multiprocessing. Cur-
rent multiplexed protocol stacks are unsuited for effi-
cient multiprocessing. Message multiplexing at each
protocol layer requires locking of shared protocol data
structures, leading to undesirable blocking and poten-
tial problems with priority inversion[25].

1 Choices is designed with an ATM network envi-
ronment in mind. ATM provides virtual connections
between network nodes. We treat ATM virtual con-
nections as representing end-to-end application com-
munication. Early demultiplexing[8, 11] based on
ATM virtual path and circuit identifiers can identify
data streams once they arrive at the network inter-
face. Message handling for different streams within
the network subsystem can then inherit the Quality
of Service parameters from the application.

Having explicit session objects in the networking
subsystem (eg. Peterson and Hutchinson’s work with
the z-kernel[16]) together with early demultiplexing
can lead to a network subsystem architecture with all
data streams decoupled from one another. This is ad-
vantageous for multiprocessor implementation.

8 Conclusion

New operating systems are required to handle the
pervasive video and audio streams of the near fu-
ture. We have addressed these issues by designing the
1 Choices operating system around the idea of inde-
pendent, object-oriented frameworks that encourage
application-specific customizability of operating sys-
tem services and policies. Components in the frame-

works may be specialized to accommodate multime-
dia traffic streams with different characteristics and
requirements.

1 Choices includes interpreted agents that can con-
trol system level processing of multimedia streams
within the kernel. Doing so eliminates the overhead
of cross-domain user to kernel system call invocations
for operating system services when a scripted agent
can do the job. It also provides more flexibility than
simple batching[10].

The unified memory buffer management scheme for
1 Choices will allow the manipulation and passing of
memory buffers between subsystems without copying.
This allows low latency data paths between system
modules.

We intend to experiment with schemes in which
applications may request and receive Quality of Ser-
vice assurances from the operating system. Policies
and mechanisms are required to ensure smooth degra-
dation of multimedia applications under load. Early
demultiplexing in a ATM network environment will
enable Quality of Service guarantees to be extended
within the network protocol stack to end-to-end net-
work data streams.

Combining these three features in g Choices allow it
to support video and audio data streams in the ubiqg-
uitous multimedia environment of the future.

References
[1] Maurice J. Bach. The Design of the UNIX Op-
erating System. Prentice Hall, Englewood Cliffs,
New Jersey, 1986.

[2] B. N. Bershad, C. Chambers, S. Eggers,
C. Maeda, D. McNamee, P. Pardyak, and S. Sav-
age amd E. G. Sirer. SPIN: An extensible micro-
kernel for application-specific operating system
services. Technical Report 94-03-03, Department
of Computer Science, University of Washington,

February 1994.

[3] A. Campbell, G. Coulson, F. Garcia, D. Hutchin-
son, and H. Leopold. Integrated Quality of Ser-
vice for Multimedia Communications. In COMM

’92, pages 99-110, 1992.

[4] Roy Campbell, Nayeem Islam, Peter Madany,
and David Raila. Designing and Implement-
ing Choices:an Object-Oriented System in C++.
Communications of the ACM, September 1993.

[5] Roy H. Campbell and Nayeem Islam. “
Choices: A Parallel Object-Oriented Operating
System”. In Gul Agha, Peter Wegner, and Aki-
nori Yonezawa, editors, Research Directions in

Concurrent Object-Oriented Programming. MIT
Press, 1993.

[6] Roy H. Campbell, Nayeem Islam, Ralph Johnson,
Panos Kougiouris, and Peter Madany. Choices,
Frameworks and Refinement. In Luis-Felipe
Cabrera and Vincent Russo, and Marc Shapiro,
editor, Object-Orientation in Operating Systems,
pages 9-15, Palo Alto, CA, October 1991. IEEE

Computer Society Press.

[7] P. Druschel, M. B. Abbot, M. A. Pagels, and L. L.
Peterson. Network Subsystem Design. IEEE Net-
work Magazine, July 1993.

[8] P. Druschel and L. Peterson. Experiences with a
High-Speed Network Adaptor: A Software Per-
spective. In SIGCOMM ’94, August 1994.

[9] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross domain transfer facility. In
Fourteenth ACM Symposium on Operating Sys-
tems Principles, pages 189-202, Dec 1993.

[10] A. Edwards, G. Watson, J. Lumley, D. Banks,
C. Calamvokis, and C. Dalton. User-space proto-
cols deliver high performance to applications on

a low-cost Gb/s LAN. SIGCOMM ’94, August
1994.

[11] D. C. Feldmeier. Multiplexing issues in commu-
nication system design. In SIGCOMM ’90, pages
209-219, September 1990.

[12] M. Gasser, A. Goldstein, C. Kaufman, and
B. Lampson. The Digital Distributed System Se-
curity Architecture. In Proceedings of the 12th
National Computer Security Conference, pages

305-319, 1989.

[13] Morrie Gasser and Ellen McDermott. An Archi-
tecture for Practical Delegation in a Distributed
System. In Proceedings of the Symposium on Se-
curity and Privacy, pages 20-30, 1990.

[14] R. Govindan and D. Anderson. Scheduling and
IPC Mechanisms for Continuous Media. In ACM,
pages 68-79, 1991.

[15] G. Hamilton, M. L. Powell, and J. J. Mitchell.
Subcontract: A flexible base for distributed pro-
gramming. Fourteenth Symposium on Operating
Systems Principles, pages 69-79, Dec 1993.

[16] Norman Hutchinson and Larry Peterson. The x-
kernel: An archtecture for implementing network
protocols. IEEE Transactions on Software Engi-
neering, 17(1):64-75, January 1991.

[17] E. A. Hyden. Operating System Support for Qual-
ity of Service. PhD thesis, Wolfson College, Uni-
versity of Cambridge, February 1994.

[18] N. Islam. Customized Message Passing and
Scheduling for Parallel and Distributed Appli-
cations. PhD thesis, University of Illinois at
Urbana-Champaign, 1994.

[19] Nayeem Islam, Robert E. McGrath, and Roy
Campbell. “Parallel Distributed Application Per-
formance and Message Passing: A case study”. In
Symposium on Ezxperiences with Distributed and
Multiprocessor Systems (SEDMS IV), San Diego,
California, September 1993.

[20] Butler Lampson. Protection. ACM Operating
Systems Review, 8(1):18-24, January 1974.

[21]

C. Maeda and B. N. Bershad. Networking Perfor-
mance for Microkernels. In Thirteenth ACM Sym-
posium on Operating Systems Principles, pages

154-159, April 1992.

J. Ousterhout. T'cl and the Tk Toolkit. Addison-
Wesley, Reading, Massachusetts, 1994.

Richard Rashid. Threads of a New System. UNIX
Review, 1986.

Dennis M. Ritchie and Kenneth Thompson. The
UNIX Time-Sharing System. ATET Bell Labo-
ratories Technical Journal, 57(6):1905, 1975.

L. Sha, R. Rajkumar, and J. Lehoczky. Prior-
ity Inheritance Protocols: An Approach to Real
Time Synchronization. [EFEE Transactions on
Computers, September 1990.

Theron Tock, Daniel Sturman, and Roy Camp-
bell. Security, Delegation, and Extensibility.
Technical report, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign,

Urbana, Illinois, August 1994.
H. Tokuda, Y. Tobe, S. Chou, and J. Moura.

Continuous Media Communication with Dynamic
QOS Control Using ARTS with an FDDI Net-
work. In COMM 92, pages 88-98, 1992.

